(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 0322 Roll	No.										

B. Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2013-14

FUNDAMENTALS OF ELECTRONICS DEVICES

Time: 3 Hours Total Marks: 100

Note: - Attempt all questions. All questions carry equal marks.

- 1. Attempt any four parts of the following: (5×4=20)
 - (a) Describe briefly the band structure of Si with suitable sketch.
 - (b) What do you understand by Miller indices? How is it used to describe a plane and direction in a crytsal?
 - (c) Derive the expression for the effective mass of an electron in an energy band in terms of wave vector.
 - (d) Calculate the volume density of Ga and As atoms with its lattice constant 5.65 A° in G < As.
 - (e) Define Fermi level and plot the Fermi function at 0°C. Calculate the probabilities of finding electrons and holes at the energy level of 0.1 ev above and below the Fermi level at temperature 0 K and 300 K.

- (f) Derive the expression for the minimum conductivity σ_{min} . Also calculate σ_{min} for Si at 300 K.
- 2. Attempt any two parts of the following: (10×2=20)
 - (a) What do you mean by luminescence? Explain the different types of luminescence.
 - (b) Describe drift and diffusion of carriers. Derive the $\exp \frac{D}{\mu} = \frac{KT}{q} \ .$
 - (c) A Si wafer has a doping concentration of 10^{16} phosphorous atoms/cm³ and 2×10^{15} Boron atoms/cm³. What concentration of boron or phosphorous atoms must be added to the wafer to make the conductivity equal to $5.0 \, (\Omega\text{-cm})^{-1}$? Calculate the position of E_F before and after doping.
- 3. Attempt any two parts of the following: $(10\times2=20)$
 - (a) What is the Contact Potential? Obtain the value of contact potential of an abrupt junction at room temperature with intrinsic concentration 1.5×10¹⁶/m³ and equal doping level of 10²¹/m³.
 - (b) What do you mean by space charge region at a junction? Derive an expression for width of space charge region in a p-n junction at thermal equilibrium condition.
 - (c) What do you mean by capacitance of p-n junctions? Derive the expression for capacitance of reverse biased junction in terms of dopings and applied voltage.

- 4. Attempt any two parts of the following: (10×2=20)
 - (a) Discuss briefly the principle of operation of a GaAs MESFET with suitable sketch showing its construction. Draw the characteristics.
 - (b) What is MOSFET? How many types of MOSFETs are there? Point out the basic difference between MOSFET and BJT.
 - (c) Explain how a Bipolar Junction Transistor can be used as an amplifier. Explain how the emitter injection efficiency affects the amplification factor.
- 5. Attempt any two parts of the following: (10×2=20)
 - (a) What are the basic constructional differences between a conventional p-n junction diode and a tunnel diode? Explain briefly the operation and characteristics of a tunnel diode.
 - (b) What is Photo Diode? Explain. How is it used as solar cell? Describe the working of solar cell.
 - (c) Explain the operation and characteristics of Silicon Controlled Rectifier. Also describe the applications of the device.

3